Skip to content

Why The Google-Nasa Partnership Signals A Completely New Computing Paradigm

2013 May 29

It’s easy to become jaded about announcements in the tech world.  Slick, media savvy CEO’s announce “revolutionary” new products with metronomic regularity.  Version 1.0 becomes 1.1 and eventually 2.0 and on and on.  It all seems like a blur.

Meanwhile, the truly groundbreaking stuff often goes unnoticed (neither the transistor nor the microchip were instant hits).  Genuine paradigm shifts come in strange guises, with little tangible effect on immediate life and often take decades to make an impact.

Nevertheless, we should take notice at the recent news of the Google-NASA quantum computing partnership which marks the beginning of a new digital paradigm.  Although we must account for that which is beyond our present understanding, even the projects currently underway promise a future that seems more science fiction than science fact.

Spooky Action At A Distance

The story begins not last week, or even last year, but in 1911 when a young scientist named Albert Einstein arrived at the Solvay Conference to discuss his discovery of light quanta with the elite physicists of the age.  It was somewhat of a coming out for the young man who, although not yet a professor, had overturned much of classical physics.

However, his own idea got away from him and he returned to the 1927 conference as an opponent of the new quantum theory.  It was there that he had his famous debates with Niels Bohr and was reported to have insisted that “God does not play dice with the universe.”

“Einstein, stop telling God what to do,” Bohr retorted.

Beyond the issue of whether matter is deterministic or the mere product of probability, what really got under Einstein’s skin was what he called “spooky action at a distance,” the strange phenomenon that we now know as quantum entanglement.  He proposed an ingenious experiment that he believed would disprove quantum theory.

It is a measure of the man that his failures have often proved more fruitful than most people’s successes.  Einstein’s experiment was carried out at IBM Labs in 1993 and resulted in the first quantum teleportation of matter.  The event would finally resolve the 1927 debates in Bohr’s favor and eventually give rise to the project announced last week.

Computing For A Nuclear Age

In the early 1940’s, another promising young scientist named Richard Feynman would find himself included in an altogether different conglomeration of brilliant scientists at Los Alamos, New Mexico.  The aim of this gathering, however, was not intellectual debate, but the explosion of an atomic device (put in motion, incidentally, by a letter from Einstein).

Among Feynman’s tasks was managing the unprecedented amount of calculations needed to estimate the potential of an atomic explosion.  To do so, he arranged his computers (which, at the time, were humans equipped with mechanical calculators) to each work on part of the problem, a technique now known as parallel computing.

After the war was over it became clear that an infinitely more powerful bomb, based on hydrogen, was theoretically possible.  However, the calculations required were thousands of times larger and even Feynman’s method would prove useless.  An electronic computer, based on digital technology, was needed to make thermonuclear bombs a reality.

The brilliant mathematician John von Neumann, a friend to both Einstein and Feynman, was assigned the job and he organized a team at Princeton’s Institute for Advanced Study (which, perhaps not surprisingly, was the academic home of Einstein as well) and it was there that the computer architecture was developed that survives to this day.

The End Of Computing As We Know It

Since the 1950’s, the internal technology that powered von Neumann’s architecture has steadily improved, from vacuum tubes to transistors to integrated circuits..  The result has been a doubling of computing power roughly every 18 months, which has enabled all of those slick launches of fancy new gadgets.

However, for some time we have been aware that this advancement would stall, due to physical limitations, sometime around 2020, unless a completely new architecture could be developed.  Many believed that the solution would be quantum computing, a new method based on the same “spooky action at a distance” that Bohr and Einstein hotly debated.

So Google and NASA’s recent announcement, along with a separate announcement that the government has been running a quantum internet for several years, marks a new era in which quantum computing is not only theoretically possible, but thoroughly vetted and technically feasible.  Moore’s law will stay intact for the foreseeable future.

In other words, the party will not end, but is indeed just getting started and we can expect the power of our devices to multiply thousands of times over the next generation.  Perhaps not surprisingly, we will not use these super-fast, super-secure new computers to do the same things faster, but to do completely different things entirely.

What The Shift Will Mean

In many ways, the Google-NASA partnership represents a new Manhattan Project, but instead of the aim being a nuclear explosion, the goal is to simulate the human brain, a feat that Google’s Director of Engineering Ray Kurzweil believes will be completed before the end of the next decade.

Following Kurzweil’s line of reasoning, the vast increase of computing power enabled by quantum computers will result in a technological singularity by the mid 2030’s, where machines will self-replicate, power similar trends of accelerating returns in fields such as nanotechnology, genomics and energy and, eventually, merge with humans.

In the more immediate future, we can expect our computing technology to get a whole lot smarter.  Services that far surpass the capabilities of even today’s most powerful supercomputers will be made available to our mobile devices through the cloud and using them will be almost indistinguishable from dealing with a human.

Google now leads in this area, but Microsoft, IBM and others (but strangely enough, not Apple) are making impressive gains as well.  The price tag for a quantum computer is around $15 million, so certainly not prohibitive and we can expect more organizations to adopt them in the coming months and years.

Two decades from now, if present trends hold, quantum devices will be available for about $1000 and it’s even possible (if certain technical conditions are overcome) that we will have the opportunity to hold in our hands the power of an intelligence that even Einstein himself thought too bold to even imagine.

– Greg

3 Responses leave one →
  1. May 30, 2013

    Hi Greg

    Your post is, uncannily, in sync with my reading. Michio Kaku’s Physics of the Future and George Dyson’s Turing’s Cathedral. Can you please give me advanced warning of your next great post, as I’m trying to keep here. Great stuff!

  2. May 30, 2013

    Thanks James, those are both great books!

    btw., if you want to keep up, I put out a newsletter every Sunday. You can find the sign up in the right column.

    – Greg

  3. June 2, 2013

    This is typical of Google – “make haste slowly” – look far enough ahead to see what the blockages are and start developing solutions in plenty of time. The did this in the early noughties when they bought bundles of dark fibre cheap after the “Internet Bubble Burst” and telecomms infrastructure went cheap. Google bought massive capacity – no one could see why – we know why now though – to connect its cloud data centres today.

    We see this with Driverless cars and Google Glass.

    This investment in quantum computing – we can’t imagine yet what new services Google have in their minds.

    I sometimes jokingly think that Google is a cover organisation for aliens or people who have time travelled from the future ad know stuff we don’t 🙂

    This is one reason why I am shifting our organisation away from Microsoft to Google – to “ride on the coattails” of Google’s innovation.

Leave a Reply

Note: You can use basic XHTML in your comments. Your email address will never be published.

Subscribe to this comment feed via RSS